Communication and Power Networks: Forward Engineering (Part II)

In Part I of this post, I have explained the idea of reverse and forward engineering, applied to TCP congestion control.   Here, I will describe how forward engineering can help the design of ubiquitous, continuously-acting, and distributed algorithms for load-side participation in frequency control in power networks. One of the key differences is that, whereas on the Internet, both the TCP dynamics and the router dynamics can be designed to obtain a feedback system that is stable and efficient, a power network has its own physical dynamics with which our active control must interact.

Continue reading

Communication and Power Networks: Forward Engineering (Part I)

This blog post will contrast another interesting aspect of communication and power networks: designing distributed control through optimization.  This point of view has been successfully applied to understanding and designing TCP (Transmission Control Protocol) congestion control algorithms in the last 1.5 decades, and I believe that it can be equally useful for thinking about some of the feedback control problems in power networks, e.g., frequency regulation.

Even though this simple and elegant theory does not account for many important details that an algorithm must deal with in a real network, it has been successfully put to practice.  Any theory-based design method can only provide the core of an algorithm, around which many important enhancements must be developed to create a deployable product. The most important value of a theory is to provide a framework to understand issues, clarify ideas, and suggest directions, often leading to a new opportunity or a simpler, more robust and higher performing design.

In Part I of this post, I will briefly review the high-level idea using TCP congestion control as a concrete example.  I will call this design approach “forward engineering,” for reasons that will become clear later.   In Part II, I will focus on power: how frequency regulation is done today, the new opportunities that are in the future, and how forward engineering can help capture these new opportunities.

Continue reading